
Nature-inspired Methods for Monitoring
Applications with Time-Evolving Data

Clara Pizzuti, Giandomenico Spezzano

CNR – National Research Council of Italy
Institute for High Performance Computing and Networking (ICAR)

Via P. Bucci 41C - 87036 Rende (CS), Italy
{pizzuti, spezzano}@icar.cnr.it

Abstract. Supporting real-time monitoring of large amount of informa-
tion from diverse information sources is receiving an increasing demand
because of the advances in data gathering and communication technolo-
gies. In this paper we propose to use a density-based clustering algorithm,
built on the Multiple Species Flocking model, for the monitoring of large
volume of streaming data, generated from numerous applications such as
machine monitoring, health monitoring, sensor networks, speech recogni-
tion. The approach has two main characteristics that make it particularly
apt for real life monitoring applications. The first is that the clustering
results are available on demand at any time. The second one is that clus-
ters can be visually tracked during their generation. This enables a user
to visually detect changes in cluster distribution and gives him insights
about the evolving nature of clusters, and thus when to eventually take
actions and decisions in real time because of the changed conditions.

1 Introduction

Data-stream analysis and mining require novel algorithms that are able to pro-
duce models of the data in an online way, looking at each data record only once,
and within a limited amount of time. Although standard data-analysis and data
mining algorithms are a useful starting point, they must typically be adapted
to operate in the stream setting. Stream clustering is a technique that performs
cluster analysis of data streams able to produce results in real time.

Although researchers in the data-stream mining field have successfully tack-
led many of the issues that are of major concern of data-streams, the area is still
new and it has many open problems. Actually, what has been addressed so far
is related to having stream-mining systems that can handle the endless flow of
data by being incremental, fast, and clever enough to approximate answers with
a certain level of accuracy, based on the stream samples that have been seen so
far.

In this paper, we propose the use of a data stream clustering method Flock-
Stream [5], for monitoring applications. FlockStream is based on a multi-agent
system that uses a decentralized bottom-up self-organizing strategy to group
similar data points. Data points are associated with agents and deployed onto



a 2D space, to work simultaneously by applying a heuristic strategy based on
a bio-inspired model, known as flocking model. Agents move onto the space for
a fixed time and, when they encounter other agents into a predefined visibility
range, they can decide to form a flock, if they are similar. Flocks can join to form
swarms of similar groups. FlockStream is particularly apt for those applications
that must monitor enormous amount of data generated continuously as a se-
quence of events and coming from different locations, since it allows to track the
evolving nature of clusters by displaying the movement of agents onto the virtual
space. This enables a user to visually detect changes in cluster distribution and
gives him insights when to eventually take actions and decisions in real time
because of the changed conditions. Another main characteristics of FlockStream
is that it allows the user to obtain an approximate, but faster result, by reducing
the time agents can move onto the virtual space.

The paper is organized as follows. In the next section we give an introduction
to the problem of monitoring applications. Section 3 describes the flocking model,
the algorithm is reported in section 4, section 5 shows the application of the
approach on a synthetic and real life data set. Section 6, finally concludes the
paper.

2 Stream clustering for monitoring applications

With the advances of data gathering and communication technologies, it be-
comes increasingly possible to support real-time monitoring of large amount of
information from diverse information sources. Large volumes of streaming data
are generated from numerous applications such as machine monitoring, health
monitoring, sensor networks, speech recognition, and so forth. In many cases,
it is inevitable to analyze streaming data, as they are an important source of
knowledge that enable us to take extremely important decisions in real time.
Monitoring of applications plays an increasingly important role in many do-
mains since it allows to detect events in monitored systems and to take actions,
such as invoke a program or notify an administrator. The following applications
have been identified as significant [7]:

1. Network monitoring and traffic engineering, sensor monitoring & surveillance
(e.g., air quality monitoring, car traffic monitoring), Web logs and Web page
click streams.

2. Discovering the evolution of workload in an ”e-commerce’ server, which can
help in dynamically fine tune the server to obtain better performance.

3. Discovering meteorological data, such as temperatures registered throughout
a region, by observing how clusters of spatial-meteorological points evolve in
time.

4. Discovering the evolution of the spread of illnesses. As new cases are re-
ported, finding out how clusters evolve can prove crucial in identifying sources
responsible for the spread of illness.



Data stream clustering has evolved as a new form of online data analysis
where real-life concepts tend to change over time. Stream clustering is a tech-
nique that performs cluster analysis of data streams able to monitor the results
in real time. A data stream is a continuously generated sequence of data whose
characteristics can evolve over time. A good stream clustering algorithm should
recognize such evolution and yields a cluster model that dynamically adapts to
the current data.

The main problem in applying clustering to data streams is that systems
can examine data only once, as it arrives, but, at the same time, they must
take into account data evolution. Thus a mechanism to remember old data,
such as, for example, the compression of old information, is necessary to adapt
to new concepts. Because of the dynamic nature of evolving data streams, in
fact, new clusters often emerge while old clusters fade out. By exploring their
temporal property, the influence of older data in the current representation can
be decreased by applying an exponential decay function.

A promising research direction in stream clustering is the development of
anytime algorithms that provide a result at any time of interruption and im-
prove their quality as time elapses. Furthermore, the ability to process data in
a single pass and summarize it, while using limited memory, is crucial to stream
clustering.

Recent achievements in some of these areas are discussed in the following
subsections.

2.1 Clustering data streams from sensors

Wireless sensor networks are a distributed autonomous network constituted by
micro nodes with sensor, data processing unit, and wireless communication com-
ponent. Wireless sensor networks provide reliable operations in various applica-
tion areas, including environmental monitoring, health monitoring, vehicle track-
ing system, military surveillance and earthquake observation. Sensors networks
facilitate the process of monitoring the physical environment and make real-time
decision about events in the environment. In such monitoring applications, au-
tomatic event detection is an essential task which aims at identifying emergent
physical phenomena of particular concern to the users. In particular, the change
of clustering patterns often indicates something important is happening [6]. For
example, clustering network event streams can help us to understand the normal
patterns, and attack alarms can be raised if the clustering pattern changes.

In a pervasive computing environment, sensors are often distributed and in
many cases embedded in several devices. Data, possibly in the form of streams,
may be emanated from multiple sensors and these streams have to be aggregated,
fused, stored, managed, and analyzed for various applications. So it is important
to mine the data in real time to extract useful information for determining
potential problems.

Clustering streaming sensors is the task of clustering different sources of data
streams, based on the data series similarity. This process tries to extract knowl-
edge about the similarity between data produced by different sensors through



time. The basic requirements usually presented for clustering data streams are
that the system must possess a compact representation of clusters, must process
data in a fast and incremental way and should clearly identify changes in the
clustering structure. Algorithms aim to find groups of sensors that have a similar
behavior through time.

2.2 Self-monitoring of distributed systems

Monitoring and online data analysis in distributed systems is important for char-
acterizing usage patterns and load distribution. Such an understanding would
help track the relative importance of components and services, delineate pos-
sible over/under or malicious utilization of the network, and manage user QoS
(Quality of Service).

The control and timely management of large-scale distributed systems, such
as device networks, data centers, and compute clusters, are tasks that are rapidly
exceeding human ability, given their complexity, dynamics, and large amounts
of data involved. Thus, the automated and online management of these systems
is essential to ensure their continued performance and robust operations.

Fortunately, systems available in-network resources can be harnessed to per-
form self-monitoring and data analysis tasks, which are crucial for effective man-
agement.

A self-monitoring system is able to observe and analyze system state and
behavior, to discover anomalies or violations, and to notify autonomic or human
administrators in a timely manner so that appropriate management actions can
be effectively applied. Furthermore, implementing the analysis technique in a de-
centralized and in-network fashion (using network resources and minimal extra-
neous information) ensures computational tractability and acceptable response
times. However, because self-monitoring mechanisms are subject to the same
failures that occur in the network they are helping to manage, the robustness
of these mechanisms is of great importance to ensure overall system reliability.
Therefore, it is very important to ensure the robustness of the proposed solution
at different levels.

The main contribution, toward achieving the goals outlined above, is given by
the work [8] that concerns the formulation and validation of a robust decentral-
ized data analysis mechanism that applies density-based clustering techniques to
identify anomalies and clusters of arbitrary size and shape in monitoring data.

Clustering data is given in the form of periodic behavior and operational
status updates events from system components, defined in terms of known at-
tributes. The event attributes are used to construct a multidimensional coordi-
nate space, which is then used to measure the similarity of events. Components
that behave in a similar fashion can then be identified by the clusters formed
by their status events in this space, while devices with abnormal behavior will
produce isolated events. The clustering algorithm requires minimal computation
at processing nodes, which makes it suitable for online execution and to support
event investigation by automatically clustering events on streams.



In the next sections, after an introduction to the flocking model, an approach
for clustering data streams, based on a bio-inspired model, is described.

3 The Flocking model

The flocking model [3] is a biologically inspired computational model for simulat-
ing the animation of a flock of entities. In this model each individual (also called
bird) makes movement decisions without any communication with others. In-
stead, it acts according to a small number of simple rules, depending only upon
neighboring members in the flock and environmental obstacles. These simple
rules generate a complex global behavior of the entire flock.

The basic flocking model was first proposed by Craig Reynolds [9], in which
he referred to each individual as a ”boid”. This model consists of three simple
steering rules that a boid needs to execute at each instance over time: separation
(steering to avoid collision with neighbors); alignment (steering toward the aver-
age heading and matching the velocity of neighbors); cohesion (steering toward
the average position of neighbors). These rules describe how a boid reacts to
other boids’ movement in its local neighborhood. The degree of locality is deter-
mined by the visibility range of the boid’s sensor. The boid does not react to the
flockmates outside its sensor range. A minimal distance must also be maintained
among them to avoid collision.

A Multiple Species Flocking (MSF) model [2] has been developed to more
accurately simulate flocking behavior among an heterogeneous population of en-
tities. MSF includes a feature similarity rule that allows each boid to discriminate
among its neighbors and to group only with those similar to itself. The addition
of this rule enables the flock to organize groups of heterogeneous multi-species
into homogeneous subgroups consisting only of individuals of the same species.

Dissimilar boids try to stay away from other boids that have dissimilar fea-
tures by a repulsive force that is inversely proportional to the distance between
the boids and the similarity between the boids.

The advantage of the flocking algorithm is the heuristic principle of the flock’s
searching mechanism. The heuristic searching mechanism helps boids to quickly
form a flock. Since the boids continuously fly in the virtual space and join the
flock constituted by boids more similar to them, new results can be quickly
re-generate when adding entities boids or deleting part of boids at run time.
This feature allows the flocking algorithm to be applied to clustering to analyze
dynamically changing information stream.

4 Algorithm description

FlockStream is a heuristic density-based data stream clustering algorithm built
on the Multiple Species Flocking model. The algorithm uses agents with distinct
simple functionalities to mimic the flocking behavior. Each multi-dimensional
data item is associated with an agent. In our approach, in addition to the stan-
dard action rules of the flocking model, we introduce an extension to the flocking



model by considering the type of an agent. The agents can be of three types:
basic (representing a new point arriving in one unit time), p-representative and
o-representative .

The introduction of the latter two types of agents follows the analogous con-
cepts introduced by Cao et al. in [1] in their algorithm density-based clustering
algorithm DenStream for data streams, of micro-cluster. In the following we
briefly review the main concepts employed in this method. A detailed descrip-
tion can be found in [1].

A micro-cluster is an extension of the concept of core point defined in the
clustering method DBSCAN [4], to store a compressed representation of the
data points examined so far, and corresponds to the notions of potential core-
micro cluster (p-micro-cluster) and outlier micro-cluster (o-micro-cluster) of
these authors.

A core point is an object in whose ϵ neighborhood the overall weight of the
points is at least an integer µ. A clustering is a set of core objects having cluster
labels. The definitions of micro-clusters are based on the concepts of summary
statistics and weight. The former allows to maintain approximate representation
of data points assigned to a micro-cluster, and thus to capture synopsis informa-
tion about the nature of the data stream. The latter gives decreasing importance
to data as time flows. The weight w of a micro-cluster must be such that w ≥ µ,
i.e. it must be above a predefined threshold µ, in order to be considered a core.

As already observed, the volume of data in streaming applications is very
huge and possibly infinite, too large to fit into the main memory of computers,
thus a mechanism to store summary of data seen so far is necessary.

These statistics are exploited to generate clusters with arbitrary shape. The
algorithm assumes the damped window model [1] to cluster data streams. In this
model the weight of each data point decreases exponentially with time t via a
fading function f(t) = 2−λt, where λ > 0. The weight of the data stream is
a constant W = v

1−2−λ , where v is the speed of the stream, i.e. the number of
points arrived in one unit time. Historical data diminishes its importance when
λ assumes higher values.

FlockStream adapted the above described concepts in the flocking model, and
distinguishes between the initialization phase, in which the virtual space is pop-
ulated of only basic agents, and the micro-cluster maintenance and clustering,
in which all the three types of agents are present.

Initialization. At the beginning a set of basic agents, i.e. a set of points, is
deployed randomly onto the virtual space and works in parallel for a predefined
number of iterations. Basic agents move according to the MSF heuristic and,
analogously to birds in the real world, agents that share similar object vector
features will group together and become a flock, while dissimilar birds will be
moved away from the flock. Agents uses a proximity function to identify objects
that are similar. In our algorithm we use the Euclidean distance to measure the
dissimilarity between data points A and B and assume that A and B are similar
if their Euclidean distance d(A,B) ≤ ϵ. Note that the agents are clustered in
the data space instead of their attribute space. While iterating, the behavior



(velocity) of each agent A with position Pa is influenced by all the agents X with
position Px in its neighborhood. The agent’s velocity is computed by applying
the local rules of Reynolds and the similarity rule. The similarity rule induces
an adaptive behavior to the algorithm since the agents can leave the group they
participate for another group containing agents with higher similarity. Thus,
during this predefined number of iterations, the points join and leave the groups
forming different flocks. At the end of the iterations, for each created group,
summary statistics are computed and the stream of data is discarded. As result
of this initial phase we have the two types of agents: p-representative and o-
representative agents.

Representative Maintenance and Clustering. When a new data stream
bulk of agents is inserted into the virtual space, at a fixed stream speed, the
maintenance of the p- and o- representative agents and online clustering are
performed for a fixed number of iterations. Different cases can occur (see figure
1) :

– a p-representative cp or an o-representative co encounter another represen-
tative agent. If the distance between them is below ϵ then they compute the
velocity vector by applying the Reynolds’ and similarity rule (step 5), and
join to form a swarm (i.e. a cluster) of similar representative (step 6).

– A basic agent A meets either a p-representative cp or an o-representative
co in its visibility range. The similarity between A and the representative
is computed and, if the new radius of cp (co respectively) is below or equal
to ϵ, A is absorbed by cp (co) (step 9). Note that at this stage FlockStream
does not update the summary statistics because the aggregation of the basic
agent A to the micro-cluster could be dropped if A, during its movement on
the virtual space, encounters another agent more similar to it.

– A basic agent Ameets another basic agent B. The similarity between the two
agents is calculated and, if d(A,B) ≤ ϵ, then the velocity vector is computed
(step 11) and A is joined with B to form an o-representative (step 12).

At the end of the maximum number of iterations allowed, for each swarm, the
summary statistics of the representative agents it contains are updated and, if the
weight w of a p-representative diminishes below βµ, where β is a fixed outlierness
threshold, it is degraded to become an o-representative. On the contrary, if the
weight w of an o-representative becomes above βµ, a new p-representative is
created.

It is wort to note that, swarms of agents represent clusters, thus the clustering
generation on demand by the user can be satisfied at any time by simply showing
all the swarms computed so far.

5 Experimental Results

In this section we study the effectiveness of FlockStream on real and synthetic
datasets and compare it with the DenStream algorithm of Cao et al. in [1] . The



1. for i=1 . . . MaxIterations
2. foreach agent (all)
3. if (typeAgent is (p-representative ∨ o-representative))
4. then{
5. computeVelocityVector(flockmates, MSF rules);
6. moveAgentAndFormSwarm(v);}
7. else{
8. if (typeAgent is (basic ∧ in neighborhood of a similar swarm) )
9. then agent temporary absorbed in the swarm;
10. else{
11. computeVelocityVector(flockmates, MSF rules);
12. moveAgentAndFormSwarm(v);}}
13. end foreach
14. end for

Fig. 1. The pseudo-code of the FlockStream algorithm.

algorithm has been implemented in Java and all the experiments have been per-
formed on an Intel(R) Core(TM)2 6600 having 2 Gb of memory. The synthetic
datasets used, named DS1, DS2 and DS3, are showed in Figure 2(a). Each of
them contains 10,000 points and they are similar to those employed by Cao et al.
in [1] to evaluate DenStream. For a fair comparison, the evolving data stream,
denoted EDS, has been created by adopting the same strategy of Cao et al. Each
dataset has been randomly chosen 10 times, thus generating an evolving data
stream of total length 100,000 having a 10,000 points block for each time unit.
The real dataset used to test the performances of FlockStream is the KDD Cup
1999 Data set (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html). This
data set comes from the 1998 DARPA Intrusion Detection Evaluation Data and
contains training data consisting of 7 weeks of network-based intrusions inserted
in the normal data, and 2 weeks of network-based intrusions and normal data
for a total of 4,999,000 connection records described by 41 characteristics. The
main categories of intrusions are four: Dos (Denial Of Service), R2L (unau-
thorized access from a remote machine), U2R (unauthorized access to a local
super-user privileges by a local un-privileged user), PROBING (surveillance and
probing). The data set has been transformed into a data stream by taking the
input order as the streaming order. For all the datasets the true class label is
known, thus the clustering quality can be evaluated by the average purity of the
clusters.

The average purity of a clustering is defined as:

purity =

∑K
i=1

|Cd
i |

|Ci|

K
∗ 100%;

where K indicates the number of clusters, |Cd
i | denotes the number of points

with the dominant class label in cluster i, and |Ci| denotes the number of



DS1 DS2 DS3
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DS1 DS2 DS3
(b)

(c)

Fig. 2. (a) Synthetic data sets.(b) Clustering performed by FlockStream on the syn-
thetic datasets. (c) Clustering performed by FlockStream on the evolving data stream
EDS.

points in cluster i. The purity is calculated only for the points arriving in a
predefined window (horizon), since the weight of points diminishes continuously.
The parameters used by FlockStream in the experiments are analogous to those
adopted by Cao et al., that is initial points/agents Na = 1000, stream speed
v = 1000, decay factor λ = 0.25, ϵ = 16, µ = 10, outlier threshold β = 0.2 and
MaxIterations = 1000. Initially we evaluated the FlockStream algorithm on
the non-evolving datasets DS1, DS2 and DS3, to check the ability of the method
to get the shape of each cluster. The results are reported in Figure 2(b). In this
figure the circles indicate the micro-cluster detected by the algorithm. We can
see that FlockStream exactly recovers the cluster shape.

The results obtained by FlockStream on the evolving data stream EDS, at
different times, are shown in figure 2(c). In the figure, points indicate the raw



data while circles denote the micro-clusters. It can been seen that FlockStream
captures the shape of each cluster as the data streams evolve.

(a) (b)

Fig. 3. (a) Clustering quality for evolving data stream EDS with horizon=2 and stream
speed=2000. (b) Clustering quality for evolving data stream EDS with horizon=10 and
stream speed=1000.

The purity results of FlockStream compared to DenStream on the EDS data
stream are shown in figure 3. In figure 3(a), horizon is set to 2 and the stream
speed is set to 2000 points per time unit. We can see the very good clustering
quality of FlockStream, in fact it is always higher than 95% and comparable
to DenStream. Figure 3(b) shows the results of FlockStream when the stream
speed is set to 1000 points per time unit and horizon is set to 10 on the EDS
data stream. The results show that FlockStream, similarly to DenStream, is
insensitive to the horizon.

The comparison between FlockStream and DenStream on the Network In-
trusion data set is shown in Figures 4(a) and 4(b). We selected the same time
points, when some particular attacks happen, chosen by DenStream, and we
report the results obtained at these moments. In the former figure the horizon
is set to 1, whereas in the latter the horizon is set to 5; the stream speed is set
to 1000 for both. We can see how FlockStream clearly ouperforms DenStream
in almost all the time units chosen and the very high clustering quality achieves
also on this dataset.

The purity of FlockStream compared to DenStream in a dataset with noise
is calculated and the clustering purity results of EDS with 1% and 5% noise
are shown in figures 5(a) and 5(b) respectively. The results demonstrate that
FlockStream achieves high clustering quality, comparable to DenStream, also
when noise is present.



(a) (b)

Fig. 4. (a) Clustering quality for Network Intrusion dataset with horizon=1 and stream
speed=1000. (b) Clustering quality for Network Intrusion dataset with horizon=5 and
stream speed=1000.

(a) (b)

Fig. 5. (a) Clustering quality for evolving data stream EDS with horizon=2, stream
speed=2000 and with 1% noise. (b) Clustering quality for evolving data stream EDS
with horizon=10, stream speed=1000 and with 5% noise.

6 Conclusions

A heuristic density-based data stream clustering algorithm built on the Mul-
tiple Species Flocking model has been presented. The method employs a local
stochastic multi-agent search strategy that allows agents to act independently
from each other and to communicate only with immediate neighbors in an asyn-
chronous way. Decentralization and asynchronism makes the algorithm scalable
to very large data sets. The approach has two main characteristics that make it
to be particularly apt for real life monitoring applications. The first is that the
clustering results are always available. This means that the clustering generation
on demand by the user can be satisfied at any time by simply showing all the



swarms computed so far. The second one is that clusters can be visually tracked
since the movement of agents onto the virtual space is displayed. This enables
a user to visually detect changes in cluster distribution and gives him insights
about the evolving nature of clusters , and thus when to eventually take actions
and decisions in real time because of the changed conditions. Future work aims
at applying the method to real life monitoring applications.
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