
A Statistical Study of Concurrent Differential

Evolution on Multi-core CPUs

Kiyoharu Tagawa

School of Science and Engineering,
Kinki University, Higashi-Osaka 577-8502, Japan

tagawa@info.kindai.ac.jp

Abstract. In order to utilize multi-core CPUs, a concurrent program
of the latest evolutionary algorithm, i.e., Differential Evolution (DE), is
described. The concurrent program of DE is based on a programming
model known as “MapReduce” and named Concurrent DE (CDE). In
this paper, two implementation techniques of CDE, namely CDE/D and
CDE/S, are presented and compared in the quality of the solutions.
Through the numerical experiments and the statistical tests conducted
on two kinds of popular multi-core CPUs, it is shown that CDE/D is
superior to CDE/S in the quality of the solutions obtained by CDE,
however CDE/D is inferior to CDE/S in the execution time of CDE.

Keywords: concurrent program, parallel processing, multi-core CPU,
evolutionary algorithm, differential evolution, non-parametric test

1 Introduction

Differential Evolution (DE), which was proposed originally by R. Storn and K.
V. Price [1], is arguably one of the most powerful stochastic real-parameter op-
timization algorithms in current use. DE is regarded as a kind of Evolutionary
Algorithm (EA). However, comparing with conventional EAs such as genetic
algorithm, evolution strategy, and particle swarm optimization, it has been re-
ported that DE exhibits an overall excellent performance for a wide range of
benchmark problems [2]. Because of its simple but powerful searching capabil-
ity, DE has gotten numerous science and engineering applications [2, 3].

Because EAs maintain a lot of individuals manipulated competitively in the
population, EAs have a parallel and distributed nature intrinsically. Therefore,
many parallelization techniques have been contrived for various EAs [4, 5]. These
parallelization techniques of EAs can be introduced easily into DE variants [6].
Actually, the parallel implementations of DE variants using networked computers
and computer clusters have been reported [7–10]. Besides, Graphics Processing
Units (GPUs) designed originally to accelerate graphics applications with several
hundreds of simplified cores have been also used to run a parallel program of DE
consisting of many tasks realized by threads executable in parallel [11, 12].

Recently, multi-core CPUs, which have more than one processor (core), have
been introduced widely into personal computers. Therefore, in order to utilize

2

the additional cores to execute costly application programs, concurrent imple-
mentations of them have been paid attention to [13]. Even though the number of
available cores is not so large, the concurrent program executed on a multi-core
CPU is the most simple and easy way to realize a parallelized DE. Therefore,
in our previous paper [14], a concurrent program of DE, which is called Concur-
rent Differential Evolution (CDE), was proposed. Exactly the proposed CDE is
a parallelized version of a neoteric DE based on the steady-state model.

The procedure of EAs for updating the individuals in the population is called
“generation alternation model”. Many EAs usually employ either of two types of
generation alternation models [15]. The first one is called “generational model”,
while the second one is called “steady-state model”. The original DE has been
based on the generational model [1]. According to the generational model, DE
holds two populations, namely current one and auxiliary one. After generating
all individuals of the auxiliary population from those of the current population,
the current one is replaced all together by the auxiliary one. On the other hand,
a neoteric DE based on the steady-state model has been reported and studied
lately [16–18]. The neoteric DE is sometimes called Sequential DE (SDE) [16].
According to the steady-state model, SDE holds only one population. Then
each individual of the population is updated one by one. Comparing with the
generational model, the steady-state model is usually suitable for parallelizing
the procedures of EAs [19]. That is because EAs based on the steady-state
model need not synchronize the manipulations of all individuals in the current
population for replacing them by newborn individuals simultaneously.

In our previous paper [14], through the numerical experiment conducted on
a multi-core CPU, it was demonstrated that the execution time of CDE was
reduced as the number of threads increased. However, the quality of solutions
obtained by CDE had not been considered. This paper focuses on the quality
of solutions obtained by CDE as well as the execution time of CDE. In order
to analyze the quality of solutions obtained by CDE, a non-parametric test is
employed. The major contributions of this paper include the following:

1. Two implementation techniques of CDE, namely CDE/D and CDE/S, are
presented. CDE/D allocates the manipulations of individuals to respective
threads dynamically, while CDE/S allocates them to all threads statically.

2. The performances of CDE/D and CDE/S are compared in both the execution
time and the quality of solutions by using two kinds of popular multi-core
CPUs: Intel(R) Core(TM) i7 and AMD Phenom(TM) II X6.

3. Through the numerical experiment and the statistical test, it is shown that
CDE/D is superior to CDE/S in the quality of solutions obtained by CDE,
however CDE/D is inferior to CDE/S in the execution time of CED.

The remainder of this paper is organized as follows. Section 2 describes the
procedure of SDE. Section 3 explains the concurrent program of SDE called
CDE. The above two implementation techniques of CDE are also presented.
Through numerical experiments, CDE/D and CDE/S are compared on two kinds
of multi-core CPUs in Section 4. The results of the numerical experiments are
analyzed by using statistical tests in Section 5. Section 6 concludes the paper.

3

2 Differential Evolution

2.1 Representation

The real-parameter optimization problem can be formulated as shown in (1). The
optimal solution of the optimization problem is a D-dimensional real-parameter
vector x = (x1, · · · , xD) ∈ IRD that minimizes the objective function value
f(x) ∈ IR. Furthermore, the value of each decision variable xj ∈ IR is limited to
the range between the lower xj and the upper xj boundaries as[

minimize f(x) = f(x1, · · · , xD)

sub. to xj ≤ xj ≤ xj , j = 1, · · · , D.
(1)

DE is used to solve the optimization problem shown in (1). DE holds NP

tentative solutions of the optimization problem, which are called individuals, in
the population P. Therefore, the i-th individual xi ∈ P is represented as

xi = (x1,i, · · · , xj,i, · · · , xD,i) (2)

where, xj ≤ xj,i ≤ xj, j = 1, · · · , D; i = 1, · · · , NP .

2.2 Strategy of DE

In order to generate a candidate for a new individual of the population, DE uses
a unique reproduction procedure called strategy. The strategy of DE is defined
by a series of three genetic operators, namely reproduction selection, differential
mutation, and crossover. Even though various strategies have been proposed for
DE [2, 16], a basic strategy named “DE/rand/1/exp” is described and used in
this paper. That is because our experimental studies have shown that the basic
strategy has relatively good compatibility with Sequential DE (SDE) [18].

In the reproduction selection, a parent individual called “the target vector”
is selected from the population P in turn. Besides, three different individuals,
say xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3), are selected randomly from P.

By using the above three individuals, namely xi1, xi2 and xi3, the differential
mutation generates a mutated vector v = (v1, · · · , vj , · · · , vD) as

v = xi1 + F (xi2 − xi3) (3)

where, the scale factor F ∈ (0, 1+] is a control parameter.
The exponential crossover between the mutated vector v and the target vec-

tor xi generates a candidate for a new individual u = (u1, · · · , uj , · · · , uD)
called “the trial vector”. Each component uj of the trial vector u is inherited
from either the mutated vector v or the target vector xi. The pseudocode in (4)
gives the procedure of the exponential crossover combined with the differential
mutation shown in (3). The subscript jr ∈ [1, D] in (4) is selected randomly,
which ensures that the trial vector u differs from the target vector xi ∈ P at least
one component ujr . Furthermore, rand[0, 1] in (4) denotes the random number

4

generator that returns a uniformly distributed random number from within the
range between 0 and 1. As well as the scale factor F in (3), the crossover rate
CR ∈ [0, 1] is a control parameter specified by the user in advance.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

j = jr;
do {

uj = xj,i1 + F (xj,i2 − xj,i3); j = j % D + 1;
} while(rand[0, 1] < CR ∧ j �= jr)
while(j �= jr) {

uj = xj,i; j = j % D + 1;
}

(4)

If a component uj of the trial vector u comes out of the range [xj , xj] as the
result of the strategy shown in (4), it is returned to the range as

uj =
{

xj,r1 + rand[0, 1] (xj − xj,i1) if(uj < xj)
xj,r1 + rand[0, 1] (xj − xj,i1) if(uj > xj)

(5)

2.3 Procedure of SDE

Since the proposed CDE is a concurrent program of SDE, we explain SDE instead
of the original DE. The procedure of SDE can be described as follows:

1: Randomly generate NP individuals xi ∈ P (i = 1, · · · , NP).
2: For each individual xi ∈ P, evaluate the objective function value f(xi).
3: Set the generation as g = 0.
4: For each xi ∈ P, i.e., the target vector, execute from Step 4.1 to Step 4.3.
4. 1: Randomly select xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3).
4. 2: Generate the trial vector u from (4) and (5). Evaluate f(u).
4. 3: If f(u) ≤ f(xi) holds then replace xi ∈ P by u and let f(xi) = f(u).

5: If g < GM then set g = g + 1 and return to Step 4.
6: Output the best xb ∈ P with the minimum f(xb) and terminate.

where, the maximum number of generation GM is also a control parameter.

3 Concurrent Differential Evolution

3.1 Model of Multi-core CPU

A program is said to be concurrent if it can support two or more tasks in process
at the same time. On the other hand, a program is said to be parallel if it
support two or more tasks executing simultaneously. The difference between
these definitions is the phrase in progress [13]. A concurrent program evokes
multiple independent tasks, which are called “threads”, at the same time. If the
concurrent program runs on a multi-core CPU, the processing of each thread
is assigned automatically to one core. Therefore, if the multi-core CPU has NT

(NT ≥ 1) cores, NT threads can be executed in parallel at the maximum.

5

core

memory

shared bus

core core core

Fig. 1. Parallel Random Access Machine (PRAM)

For designing concurrent programs, Parallel Random Access Machine (PRAM)
is often used to model a multi-core CPU [13]. Figure 1 illustrates a configuration
of PRAM in which multiple cores attached to an unlimited memory that is shared
among all the cores. Besides, Concurrent Read and Exclusive Write (CREW) is
assumed to access the memory of PRAM. Therefore, multiple threads running
on respective cores may read from the same memory location at the same time
and only one thread may write to a given memory location at any time.

3.2 Main Routine of CDE

As stated above, CDE is a concurrent program of SDE. Except the detailed
procedure of Worker(n), the main routine of CDE is described as

1: Randomly generate NP individuals xi ∈ P (i = 1, · · · , NP).
2: Evoke Worker(n) (n = 1, · · · , NT) in parallel.
3: Wait until every Worker(n) (n = 1, · · · , NT) is completed.
4: Output the best xb ∈ P with the minimum f(xb) and terminate.

CDE is based on a programming model known as “MapReduce” [20]. The
programming model consists of two phase, namely Map-phase and Reduce-phase.
In the main routine of CDE, Step 2 corresponds to the Map-phase, while Step
4 corresponds to the Reduce-phase. Each Worker(n) is realized by one thread.
Therefore, NT threads are evoked and executed concurrently in Step 2.

Worker(n) generates the trial vector u from the assigned target vector xi,
evaluate f(u), and updates the individual in the population. For assigning the
target vector xi ∈ P to Worker(n), we propose the following two techniques,
namely the dynamic allocation and the static allocation of tasks.

3.3 Dynamic Allocation of Tasks

CDE with the dynamic allocation of tasks is named CDE/D. CDE/D allo-
cates the target vector xi ∈ P to Worker(n) over time as CDE/D executes.
GetIndex() denotes an exclusive function that returns an unique index at a
time in ascending order such as t = 1, 2, · · ·. By using GetIndex(), Worker(n)
gets an index of the assigned target vector dynamically. According to the access
rule of CREW, Worker(n) has to overwrite xi ∈ P and f(xi) in Step 3.4 under
the exclusion control. The procedure of Worker(n) is described as

6

1: Get an index such as t = GetIndex().
2: While t ≤ NP holds, evaluate f(xt) and let t = GetIndex().
3: While t ≤ (GM + 1)NP holds, execute from Step 3.1 to Step 3.5.

3. 1 Designate the target vector such as xi (i = t%NP + 1).
3. 2 Randomly select xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3).
3. 3 Generate the trial vector u from (4) and (5). Evaluate f(u).
3. 4 If f(u) ≤ f(xi) holds then replace xi ∈ P by u and let f(xi) = f(u).
3. 5 Get an index such as t = GetIndex().

3.4 Static Allocation of Tasks

CDE with the static allocation of tasks is named CDE/S. First of all, the pop-
ulation P is divided into NT sub-population Pn called “chunks” as

P = P1 ∪ · · · ∪ Pn ∪ · · · ∪ PNT (6)

CDE/S allocates each chunk Pn to Worker(n) statically. Worker(n) can read
any individuals xi ∈ P, but it may overwrite only the individuals xi ∈ Pn. In
other words, the task for updating the individuals in one chunk Pn is permitted
only to Worker(n). Therefore, the exclusion control among multiple threads is
not necessary for CDE/S. The procedure of Worker(n) is described as

1: For each individual xi ∈ Pn, evaluate the objective function value f(xi).
2: Set the generation as g = 0.
3: For each xi ∈ Pn, i.e., the target vector, execute from Step 3.1 to Step 3.3.

3. 1 Randomly select xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3).
3. 2 Generate the trial vector u from (4) and (5). Evaluate f(u).
3. 3 If f(u) ≤ f(xi) holds then replace xi ∈ Pn by u and let f(xi) = f(u).

4: If g < GM then set g = g + 1 and return to Step 3.

4 Numerical Experiments

4.1 Benchmark Problems

The following two test functions are used as the objective function f(x) in (1).
Both benchmark problems have D = 30 dimensional real-parameters. The func-
tion values of the optimal solutions are known as fp(x) = 0 (p = 1, 2).

• Sphere function (unimodal function):

f1(x) =
D∑

j=1

x2
j

− 100 ≤ xj ≤ 100, j = 1, · · · , D.

• Griewank function (multimodal function):

f4(x) =
1

4000

D∑
j=1

x2
j −

D∏
j=1

cos
(

xj√
j

)
+ 1

− 600 ≤ xj ≤ 600, j = 1, · · · , D.

7

Table 1. Specifications for Personal Computers (PCs)

PC CPU OS clock memory

PC1 Intel(R) Core(TM) i7 WindowsXP 3.34GHz 2.99GB

PC2 AMD Phenom(TM) II X6 Windows7 3.20GHz 3.25GB

4.2 Experimental Results

The programs of SDE, CDE/D and CDE/S were coded by the Java language,
which is a very popular language supporting multiple threads, and executed
on two kinds of Personal Computers (PCs) equipped with different multi-core
CPUs. Table 1 summarizes the specifications for the two PCs which are denoted
by PC1 and PC2. The multi-core CPU in PC1 has four cores each of which
manipulates two threads at the same time, while the multi-core CPU in PC2
has six cores. The control parameters of SDE, CDE/D and CDE/S were chosen
as F = 0.5, CR = 0.9, NP = 144 and GM = 1000. Then the three methods were
applied respectively to the two benchmark problems 50 times.

Tables 2-5 show the results of the numerical experiments conducted on PC1.
Table 2 shows the execution times of SDE and CDE/D averaged over 50 inde-
pendent runs, where the standard deviation of the execution times also appear
in parentheses. Table 3 shows the execution time of CDE/S in the same way
with Table 2. On the other hand, Table 4 and Table 5 show the average and the
standard deviation of the objective function values of the best solutions obtained
by CDE/D and CDE/S respectively. Similarly, Tables 6-9 show the results of the
numerical experiments about CDE/D and CDE/S conducted on PC2.

In order to evaluate the performance of CDE in the execution time, the
speedup defined by (7) is used [14]. Tm denotes the execution time of SDE,
while Tm(NT) denotes the execution time of CDE using NT (NT ≥ 1) threads.
Both Tm and Tm(NT) are averaged over m = 50 independent runs.

Sm(NT) =
Tm

Tm(NT)
(7)

Figure 2 plots the speedup curves achieved by CDE/D and CDE/S on PC1,
which are calculated from Table 2 and Table 3. Figure 3 also plots the speedup
curves achieved by CDE/D and CDE/S on PC2, which are calculated from Table
6 and Table 7. From the speedup curves in Fig. 2 and Fig. 3, it can be confirmed
that CDE/S utilizes multi-core CPUs more efficiently than CDE/D on both PCs
because CDE/S doesn’t spend any overhead for the exclusion control.

5 Non-Parametric Tests

Since CDE is a stochastic algorithm as well as the other EAs, it is desirable
to verify the results of the numerical experiments by using statistical tests.
Even though parametric tests such as the analysis of variance (ANOVA) have

8

Table 2. Execution times of CDE/D and SDE on PC1 [ms]

fp SDE
CDE/D

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
146.26 146.86 128.74 94.63 80.30 85.62
(8.79) (8.86) (7.38) (5.97) (5.53) (9.12)

f2
361.58 362.50 214.06 128.44 99.68 90.00
(7.05) (9.53) (9.60) (7.90) (7.67) (7.50)

Table 3. Execution times of CDE/S and SDE on PC1 [ms]

fp SDE
CDE/S

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
146.26 145.62 100.62 62.50 54.68 46.24
(8.79) (7.89) (8.97) (8.29) (7.97) (6.22)

f2
361.58 361.26 199.06 111.26 92.18 74.70
(7.05) (6.83) (9.32) (7.60) (7.84) (7.28)

Table 4. Objective function values obtained by CDE/D and SDE on PC1

fp SDE
CDE/D

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
4.32E-10 4.32E-10 4.66E-10 4.64E-10 4.88E-10 4.40E-10

(1.27E-10) (1.27E-10) (1.52E-10) (1.40E-10) (1.77E-10) (1.39E-10)

f2
8.94E-8 8.94E-8 9.59E-9 2.04E-8 1.80E-8 1.07E-7

(4.48E-7) (4.47E-7) (1.86E-8) (6.11E-8) (5.31E-8) (6.20E-7)

Table 5. Objective function values obtained by CDE/S and SDE on PC1

fp SDE
CDE/S

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
4.32E-10 4.32E-10 4.53E-10 1.20E-9 9.78E-10 8.09E-10

(1.27E-10) (1.27E-10) (1.33E-10) (2.50E-9) (5.33E-10) (3.31E-10)

f2
8.94E-8 8.94E-8 2.06E-8 8.99E-9 3.47E-8 1.78E-8

(4.48E-7) (4.48E-7) (6.13E-8) (1.29E-8) (5.38E-8) (4.18E-8)

Table 6. Execution times of CDE/D and SDE on PC2 [ms]

fp SDE
CDE/D

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
196.40 195.18 205.18 146.78 179.56 187.98
(7.77) (7.71) (15.34) (7.74) (8.57) (3.13)

f2
401.24 399.26 273.72 178.94 169.26 181.12
(7.84) (8.80) (11.80) (7.90) (6.64) (8.46)

9

Table 7. Execution times of CDE/S and SDE on PC2 [ms]

fp SDE
CDE/S

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
196.40 192.34 175.18 94.92 70.88 65.58
(7.77) (7.96) (18.28) (9.91) (9.58) (6.29)

f2
401.24 398.76 252.94 143.64 103.34 106.80
(7.84) (8.95) (10.97) (7.09) (8.91) (8.74)

Table 8. Objective function values obtained by CDE/D and SDE on PC2

fp SDE
CDE/D

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
4.32E-10 4.32E-10 4.92E-10 4.79E-10 4.95E-10 5.07E-10

(1.27E-10) (1.27E-10) (1.31E-10) (1.34E-10) (1.72E-10) (1.62E-10)

f2
8.94E-8 8.94E-8 1.36E-8 1.42E-8 1.14E-8 2.29E-8

(4.48E-7) (4.47E-7) (3.32E-8) (2.44E-8) (1.44E-8) (5.39E-8)

Table 9. Objective function values obtained by CDE/S and SDE on PC2

fp SDE
CDE/S

NT = 1 NT = 2 NT = 4 NT = 6 NT = 8

f1
4.32E-10 4.32E-10 4.18E-10 4.09E-9 4.01E-9 3.22E-7

(1.27E-10) (1.27E-10) (9.74E-11) (6.39E-9) (6.16E-9) (2.23E-7)

f2
8.94E-8 8.94E-8 1.45E-8 1.99E-8 2.46E-8 2.19E-6

(4.48E-7) (4.48E-7) (2.10E-8) (3.85E-8) (4.40E-8) (2.51E-6)

Table 10. Wilcoxon test between SDE and CDE (CDE/D or CDE/S) on PC1

fp NT 1 2 4 6 8

f1

CDE/D 50.50 52.88 54.04 54.52 50.14
SDE 50.50 48.12 46.96 46.48 50.86

P -value 1.00 0.41 0.22 0.16 0.90
CDE/S 50.50 52.30 69.44 70.16 70.96
SDE 50.50 48.70 31.56 30.84 30.08

P -value 1.00 0.53 0.00 0.00 0.00

f2

CDE/D 50.50 43.88 48.04 47.54 51.02
SDE 50.50 57.12 52.96 53.46 49.98

P -value 1.00 0.02 0.39 0.30 0.85
CDE/S 50.50 45.70 46.02 57.28 45.92
SDE 50.50 55.30 54.98 43.72 55.08

P -value 1.00 0.09 0.12 0.01 0.11

10

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9
number of workers

sp
ee

du
p

CDE/S

CDE/D

(a) Sphere function: f1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9
number of workers

sp
ee

du
p

CDE/D

CDE/S

(b) Griewank function: f2

Fig. 2. Speedup curves achieved by CDE/D and CDE/S on PC1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

CDE/S

CDE/D

sp
ee

du
p

number of workers

(a) Sphere function: f1

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

sp
ee

du
p

number of workers

CDE/S

CDE/D

(b) Griewank function: f2

Fig. 3. Speedup curves achieved by CDE/D and CDE/S on PC2

been used widely in the comparison of the behavior of EAs [17, 21, 22], a non-
parametric test known as Wilcoxon test is used to analyze the behavior of CDE.
That is because non-parametric tests don’t require to check any conditions such
as independence, normality, and heteroscedasticity in the advance.

From the results of the numerical experiments shown in Tables 4, 5, 8, and 9,
the objective function values of the best solutions, i.e., the quality of solutions,
seem to depend on the number of threads. Furthermore, the quality of solutions
seems to be different between CDE/D and CDE/S. Therefore, the quality of so-
lutions was analyzed statistically by using Wilcoxon test. The null hypothesis of
Wilcoxon test was that there was no significant difference between two objective
function values obtained by SDE and CDE (CDE/D or CDE/S).

Tables 10-11 show the averaged ranks of the two methods and P -values calcu-
lated by Wilcoxon test. The lower the rank is, the smaller the objective function
value is. If P -value is larger than 0.01 in Tables 10-11, we can say that there is
no significant difference between SDE and CDE in the quality of solutions. In

11

Table 11. Wilcoxon test between SDE and CDE (CDE/D or CDE/S) on PC2

fp NT 1 2 4 6 8

f1

CDE/D 50.50 57.62 55.69 54.98 56.52
SDE 50.50 43.38 45.31 46.02 44.48

P -value 1.00 0.01 0.07 0.12 0.03
CDE/S 50.50 49.47 75.44 75.46 75.50
SDE 50.50 51.53 25.56 25.54 25.50

P -value 1.00 0.72 0.00 0.00 0.00

f2

CDE/D 50.50 46.88 47.34 49.90 48.58
SDE 50.50 54.12 53.66 51.10 52.42

P -value 1.00 0.21 0.27 0.83 0.50
CDE/S 50.50 49.02 51.64 54.06 74.44
SDE 50.50 51.98 49.36 46.94 26.56

P -value 1.00 0.60 0.69 0.21 0.00

every case of CDE/D, the null hypothesis can’t be rejected with the risk less
than 0.01 (P ≥ 0.01). However, in some cases of CDE/S, the null hypothesis can
be rejected with the risk less than 0.01. In other words, the quality of solutions
obtained by CDE/S depends on the number of threads on both PCs.

6 Conclusion

In this paper, two implementation techniques of CDE, namely CDE/D and
CDE/S, were presented and compared in the execution time and the quality of
solutions. Through the numerical experiment and the statistical test conducted
on two kinds of multi-core CPUs, it was shown that CDE/D was superior to
CDE/S in the the quality of solutions, while CDE/S was superior to CDE/D
in the execution time. The concurrent program executed on a multi-core CPU
can allocate tasks to threads directly but can’t assign these threads to cores by
itself. Besides, in addition to the concurrent program, several system programs
including OS may be running on the same PC. Consequently, the performance
of the concurrent program usually depends on the computational environment.

In our future work, we would like to develop a new implementation technique
of CDE for maximizing the performance of CDE in both the execution time and
the quality of solutions regardless of the computational environment.

References

1. Storn, R. and Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous space. Journal of Global Optimization, 4(11),
341–359 (1997)

2. Price, K. V., Storn, R. M., and Lampinen, J. A.: Differential Evolution - A Practical
Approach to Global Optimization, Springer (2005)

3. Das, S. and Suganthan, P. N.: Differential evolution: a survey of the state-of-the
art. IEEE Trans. on Evolutionary Computation, 15(1), 4–31 (2011)

12

4. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers (2001)

5. Alba, E. and Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
on Evolutionary Computation, (6)5, 443–462 (2002)

6. Dorronsoro, B. and Bouvry, P.: Improving classical and decentralized differential
evolution with new mutation operator and population topologies. IEEE Trans. on
Evolutionary Computation, (15)1, 67–98 (2011)

7. Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., and Vrahatis, M. N.: Parallel
differential evolution. In: Proc. of IEEE Congress on Evolutionary Computation,
2023–2029 (2004)

8. Zaharie, D. and Petcu, D.: Parallel implementation of multi-population differential
evolution. Concurrent Information Processing and Computing, ISO Press, 223–232
(2005)

9. Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce.
In: Proc. of Genetic and Evolutionary Computation Conference, 1113–1114 (2010)

10. Ishimizu, T. and Tagawa, K.: Experimental study of a structured differential evo-
lution with mixed strategies. Journal of Advanced Computational Intelligence and
Intelligent Informatics, 15(9), 1310–1319 (2011)

11. de Veronses, L and Krohling, R.: Differential evolution algorithm on the GPU with
C-CUDA. In: Proc. of IEEE Congress on Evolutionary Computation, 1–7 (2010)

12. Krömer, P., Snášel, V., and Platoš, J.: Many-thread implementation of differential
evolution for the CUDA platform. In: Proc. of Genetic and Evolutionary Compu-
tation Conference, 1595–1602 (2011)

13. Breshears, C.: The Art of Concurrency - A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly (2009)

14. Tagawa, K. and Ishimizu, T.: Concurrent differential evolution based on MapRe-
duce. International Journal of Computers, 4(4), 161–168 (2010)

15. Syswerda, G.: A study of reproduction in generational and steady-state genetic
algorithms. Foundations of Genetic Algorithms 2, Morgan Kaufmann Publ., 94–
101 (1991)

16. Feoktistov, V.: Differential Evolution in Search Solutions. Chapter 6, Springer
(2006)

17. Tagawa, K.: A statistical study of the differential evolution based on continuous
generation model. In: Proc. of IEEE Congress on Evolutionary Computation, 2614–
2621 (2009)

18. Tagawa, K. and Ishimizu, T.: A comparative study of distance dependent survival
selection for sequential DE. In: Proc. of IEEE International Conference on System,
Man, and Cybernetics, 3493–3500 (2010)

19. Davison, B. D. and Rasheed, K.: Effect of global parallelism on a steady state
GA. In: Proc. of Genetic and Evolutionary Computation Conference Workshops,
Evolutionary Computation and Parallel Processing Workshop, 167–170 (1999)

20. Dean, J. and Ghemawat, S.: MapReduce: simplified data processing on large clus-
ters. In: Proc. of 6th Symposium on Operating Systems Design and Implementa-
tion, 137–149 (2010)

21. Rojas, I., Gonzalez, J., Pomares, H., Merelo, J. J., Castillo, P. A., and Romero,
G.: Statistical analysis of the main parameters involved in the design of a genetic
algorithm. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 32(1), 31–37 (2002)

22. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., and Gupta, R.: Statistical ex-
ploratory analysis of genetic algorithms. IEEE Trans. on Evolutionary Computa-
tion, 8(4), 405–421 (2004)

