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Abstract. The Organic Computing initiative aims at introducing new,
self-organising algorithms in order to cope better with the complexity of
today's systems. One approach to self-organisation is the introduction of
agents which are able to continuously adapt their behaviour to changing
environmental conditions and thus collectively create an e�cient and
robust system. In this paper, we introduce an evolutionary approach
to an agent which acts autonomously in a Desktop Grid system. The
evolutionary agent is de�ned by ten chromosomes de�ning its behaviour.
If two agents interact, the inferior agent copies a part of the genes of the
more successful agent. Therefore, the most successful gene combination
will spread throughout the network.

1 Introduction

Organic Computing(OC) o�ers a variety of algorithms and mechanisms to en-
able cooperation between heterogeneous subsystems in large-scale, complex sys-
tems. For these highly dynamic systems, not all possible con�gurations can be
foreseen at design time. Therefore, self-X properties, such as self-organisation,
self-con�guration or self-healing are used to optimise these complex systems at
run-time and thus cope with their dynamics.

A new research focus in the OC context is Social OC [8], which transfers con-
cepts and knowledge gained from social systems and institutional economics into
system architectures. A project within this new research area is the OC-Trust
project which aims at improving both the cooperation among subsystems and
the robustness regarding malicious behaviour using trust-based algorithms. En-
suring the trustworthiness of subsystems will enable system designers to realise
the openness of complex, highly dynamic systems, i.e. the dynamic inclusion of
formerly unknown agents.

One approach to the management of complex, dynamic systems is the usage
of Adaptive Agents [2]. These agents are able to �t their behaviour to the cur-
rent situation they observe based on prede�ned thresholds. These thresholds are
tailored to the situation, e.g. if there is a high workload, an agent needs to ask
more (and occasionally even less trustworthy) agents for cooperation. For each
situation the system designer de�nes a suited threshold, based on his knowledge



of the system at design-time. However, we want these agents to learn and opti-
mise at run-time the threshold best suited in a given situation. One possibility
for optimisation is an evolutionary approach where during agent interaction, a
new population arises, continuing life with the dominant genes of the success-
ful agents from the last generation. This completely distributed way of learning
and optimisation seems to be worthwhile considering for the agents in our ap-
plication scenario. Therefore, in this paper, we introduce and evaluate a new
class of agents called Evolutionary Agents which optimise the decision making
in both worker and submitter role at run-time by imitation of the �tter agents
in combination with mutation.

This paper is organised as follows: First, the application scenario Trusted
Desktop Grid, which has been used for the evaluation in this paper, will be
introduced and a short overview on related work is given. In Section 3, the
design and implementation of our Evolutionary Agent will be given. We will
evaluate how the Evolutionary Agents behave, both in a homogeneous system
and in a heterogeneous system with Adaptive Agents, in Section 4. In the last
section, we will conclude the paper and give an outlook on our future work.

2 Application scenario: Trusted Desktop Grid

The application scenario for our research is a desktop grid and volunteer comput-
ing system (DGVCS, [4]) with agents acting on behalf of the users. The system
is designed as a distributed system without central control. Clients have the ca-
pabilities to be both submitters and workers, which is described below in more
detail. The clients are assumed to be heterogeneous in terms of administrative
domains, machine resources, usage patterns, volatility etc. Such a grid is suitable
for scenarios where most clients run applications that produce grid jobs and thus
are in high demand of computing resources.

In the Trusted Desktop Grid, agents become submitters whenever a user
application on their machine produces a grid job. These jobs are split into single
work units (WUs) which are distributed among available worker clients. The
workers process them and return the results to the submitters which validate
the results. However, these systems are exposed to threats by clients that plan
to exploit or damage the system. A worker can for example return an incorrect
result or not return a result at all. Workers can also refuse to accept a WU.
Here, trust mechanisms can help the agents to estimate the future behaviour of
other agents. By extending each client with an agent component and modelling
the relations between the agents with a trust mechanism, we expect to counter
these threats and thus increase the e�ciency of such a system. If, for instance,
an agent chooses only those workers that it already had good experiences with,
the expected outcome is better. In this paper, the desktop system introduced
above has been evaluated in a multi-agent simulation. Agents in this system
can act as submitter (i.e. decide which worker to give WUs to) and worker
(decide whose WUs to accept) at the same time. However, agents following
static rules according to a �xed trust model can not succeed in a highly dynamic



system. Volatile peers, changing trust relations, di�erent workloads and user
goals all require the agents to adapt in order to be successful. Moreover, we
want the agents to autonomously decide between a more egoistic and a more
altruistic behaviour and learn which behaivour is successful in a situation. In the
Evolutionary Agent approach introduced in this paper, we show and evaluate
how learning and run-time optimisation using an evolutionary approach can be
used in our application scenario.

2.1 Related work

The idea of using evolutionary approaches for Grid Computing has, for instance,
been introduced in [1]. The paper shows the development of genes in a simulated
evolutionary peer-to-peer overlay scheme. In contrast to this, the behaviour of
our evolutionary agent approach is not only evolutionary, but also based on
trust. An overview of trust and reputation concepts can be found in [7]. Our
agents are given trust and reputation values determined by former interactions.
Thus, trust is used as a constitutional part of the agent cooperation relations as
discussed in Section 2. Our Evolutionary Agent approach is based on the idea
of using evolution to model trust relations in Multi-Agent Systems (MAS) as
introduced in [6]. The authors of [6] have introduced a chromosome structure
which is able to model trust-based behaviour of agents. With this model, trust
creation, destruction and rebuilding can be realised and analysed using a graph-
ical representation of the agents' genes. We have modi�ed this model by creating
a new chromosome structure tailored to the Grid agents in our application sce-
nario Trusted Desktop Grid. We have simulated the Trusted Desktop Grid as
MAS. A justi�cation for the usage of agents for Desktop Grid systems is given
in [5].

3 Evolutionary Agent

The Evolutionary Agent is an approach to run-time optimisation of trust-based
interaction. Based on [6], we aimed at creating an evolutionary agent model,
which enables cooperation and trust-building. This model has been adapted for
our application scenario Trusted Desktop Grid in order to make it the basis of
the worker and submitter decisions.

In this section, we will introduce the design of this agent type in general as
well as how this design is used to make the agent decisions in the application
scenario Trusted Desktop Grid in both worker and submitter role.

The Evolutionary Agent consists of a chromosome structure, which contains
10 genes. The bit values of the genes represent the alleles of the agent. The com-
binations of these genes in�uence the behaviour and decisions of the agent. The
genes contain instructions that are interpreted as characteristics of the agents.
Each agent follows its own strategy that is induced by the sequence of bits in its
chromosome.



Table 1 describes the chromosome and the genes it contains, which encode
the behaviour of the agent. The chromosome consists of 10 genes: Gene 1 is used
to de�ne the general character of the agent. Genes 2 to 5 de�ne how the agent
comes to trust decisions whereas gene 10 marks the actual trust decision. Genes
6 to 9 de�ne, which characteristics of other agents are taken into account for
decision making.

Each gene can have the value 1 or 0. Thus, there exist 210 di�erent types
of Evolutionary Agents. Gene 1 de�nes the character of the agent. It decides
whether the agent is an egoist (E) (G1 = 0) or a cooperator (C) (G1 = 1) and
tries to do its job as well as possible. This means that an egoist will accept
work units, if it trusts its partner, but will abort them with a high probability
before they are �nished. A cooperator will accept work units if the number of
work units in its queue is not too high and it trusts its partner. Then it will try
to process the work units and avoid aborting them. The genes 2 to 5 in�uence
the decisions of the agent, if it will trust its partner. Those genes determine the
signals which the agent has to pay attention to:

� Its own intentions (Gene 2)

� Reputation of the partner (Gene 3)

� Fitness of the partner (Gene 4)

� Workload of the partner (Gene 5)

The genes 6 to 9 determine how to interpret those signals. If the value of the
signaling gene (2-5) is 0 then the corresponding gene (6-9) is ignored.

The following example (cf. Figure 1) will illustrate the signals and the corre-
sponding behaviour of an agent Ai which decides how to interact with an agent
Aj : We assume that the values of gene 2 and gene 4 are 1 and the values of gene
3 and gene 5 are 0. Gene 2 has the value 1, so its own intentions (Gene 1) will
be included in the process of building trust. This depends on the value of gene
6. If gene 6 = 0 the agent assumes that the partner is the opposite of the agent's
gene 1. If gene 6 has the value 1, the agent assumes, that the partner's gene 1
has the same value as the agent's gene 1. The assumption that the partner is a
cooperator will increase trust while the assumption that the partner is an egoist
will decrease trust. Since gene 4=1, the agent pays attention to the partner's
�tness. If gene 8=0 the agent will trust those which have a lower �tness than
itself and distrust those with a higher �tness. If gene 8=1 the behaviour is in-
verted. The number of signals that recommend trust are normalized with the
total number of signals that the agent pays attention to, so that it results in a
value between 0 and 1. This value represents the probability that the agent will
trust a partner. If an agent will pay attention to none of the four signals, then
gene 10 decides if the agent will trust the partner. Based on total trust (G10 = 1)
or total distrust (G10 = 0), the agent will accept all work units or reject all work
units respectively.



Genes Alleles Rules

1
0 E (Egoist: aborts Work Units (WUs) with high probability).
1 C (Cooperator: tries to process WUs as well as possible).

2
0 Don't involve your own intentions (G1) into building trust.
1 Involve your own intentions (G1) into building trust, given (G6).

3
0 Ignore the partner's reputation.
1 Pay attention to the partner's reputation, given (G7).

4
0 Ignore the �tness of the partner.
1 Pay attention to the �tness of the partner, given (G8).

5
0 Ignore the workload of the partner.
1 Pay attention to the workload of the partner, given (G9).

6
0 Assume that others are the opposite of your gene (G1).
1 Assume that others are the same as your gene (G1).

7
0 Distrust those who have a relatively high reputation. Trust those

who have a relatively low reputation.
1 Trust those who have a relatively high reputation. Distrust those

who have a relatively low reputation.

8
0 Distrust those who have a relatively high �tness. Trust those who

have a relatively low �tness.
1 Trust those who have a relatively high �tness. Distrust those who

have a relatively low �tness.

9
0 Distrust those who have a relatively high workload. Trust those

who have a relatively low workload.
1 Trust those who have a relatively high workload. Distrust those

who have a relatively low workload.

10
0 Distrust everybody (reject all WUs).
1 Trust everybody (try to process all WUs).

Table 1: Chromosome Structure of the Evolutionary Agent

Fig. 1: The chromosome structure of Evolutionary Agent Ai decides how to treat
agent Aj



3.1 Gene initialisation

The genes of each agent are set randomly at creation. For each gene there exists
a parameter which has a value between 0 and 1. This parameter determines
the probability that the corresponding gene is set to 1 when an Evolutionary
Agent is created. Regarding the population of all Evolutionary Agents the value
of the parameter corresponds to the expected number of agents which have the
corresponding gene equal to 1. The standard value is 0.5, so that each gene of
half of the Evolutionary Agents takes the value 1.

3.2 Evolution and spreading of the genes

To ensure the evolution of the genes and the corresponding trust strategies, a
gene exchange between the agents can occur when they come into contact. In
this process, the genetic instructions will be transferred with a �xed probability
from the agents with a higher �tness to those who have a lower �tness. If two
agents interact, the partner with the lower �tness replaces a random part of
his chromosome structure with a part of the �tter partner's chromosome. In this
procedure, each bit in a chromosome can be replaced independently of the others.
Whether a bit of the agent with a lower �tness is replaced by the �tter agent's bit
is determined by the recombination probability. In this case the recombination
probability was 50%.

Furthermore, to increase heterogeneity, mutation occurs during the gene re-
placement. Thus, during the transfer of the genes from the �tter agent to the
weaker agent random copying errors (mutations) can arise. The probability that
a copying error during a gene replacement occurs is 1%. This value allows for
su�cient heterogeneity without a�ecting the stability of evolution. Thus, Evolu-
tionary Agents are able to leave local optima in their �tness landscape and have
a higher probability to reach the global optimum.

3.3 Worker: Acceptance of Work Units

To decide whether a work unit is accepted or not the chromosome structure is
analysed. If the agent pays attention to more than one signal of the partner, each
bit is equally taken into account. Partners which send out mixed cooperation
signals will be trusted with a corresponding probability. Let's assume that three
of the signal genes are used, where two show trust in the partner and the third
distrust. Then the agent will trust the partner and accept the work unit with a
probability of 2

3 . In this paper, the signal genes are weighted equally.

3.4 Submitter: Distribution of Work Units

In our Grid agent model, a ranking of the suited worker agents is created to
distribute the work units [2]. In this paper, this is done by calculating a score
of reputation, �tness and workload whereby genes 3, 4 and 5 determine which
of these characteristics are included and gene 7, 8 and 9 determine whether the



total score will be increased or decreased. After creating the ranking, its own
work unit is o�ered, in order of ranking, to the other agents until one of them
accepts or the submitter has to process the work unit itself.

4 Experimental results

In the experiments presented in this paper, we investigated how the Evolution-
ary Agents behave with other types of agents and with each other. Subsection
4.1 introduces the system model and the parameters used in this evaluation. In
Experiment 1 (Subsection 4.2), we analysed how Evolutionary Agents behave
in a heterogeneous system of both Evolutionary and Adaptive Agents. Adap-
tive Agents have been the most successful agent type in former experiments [2].
Experiment 2 (Subsection 4.3) has been conducted in order to evaluate the be-
haviour in a homogeneous system of Evolutionary agents. The �gures presented
in this section show typical results of 10 runs conducted for each experiment.

4.1 System model

In the experiments, we observed 100 agents over a period of 100,000 ticks (time
units). Each gene of a chromosome of an Evolutionary Agent is initialised with
1 with a probability of 50%. Additionally, each gene has a recombination proba-
bility of 50%, and the probability that mutation occurs during a recombination
is 1%. The �rst experiment consisted of a population of 100 agents of which
50% were Evolutionary Agents and 50% Adaptive Agents. In the second ex-
periment we generated a homogeneous population of 100 Evolutionary Agents.
Other agent con�gurations have also been investigated, these two experiments
have been chosen in order to cover both heterogeneous and homogeneous sys-
tem con�gurations. The probability that an Evolutionary Agent with gene1 = 0
aborts a work unit was set to 75% in both experiments.

In both experiments, we measured the aggregated trust value Ti,j of agent
Ai in agent Aj as a function of the form

Ti,j = f(repj , expi,j),−1 ≤ Ti,j ≤ 1. (1)

where repj is the reputation of the agent in the system and expi,j an aggre-
gation of the personal experiences Ai has had with Aj in the past. The function
contains a weight: the fewer the agents' personal experiences, the higher the
reputation weight. Nonetheless, the reputation is always taken into account to a
certain degree in order to recognise changes in agent behaviour with more than
just knowledge from own experience.

In both experiments, we measured the �tness of the agents. Our �tness func-
tion consists of the bene�t the agent has from participating in the system as well
as the e�ort he spent in order to reach this bene�t:

fitness = α ∗ benefit+ (1− α) ∗ (1− effort) (2)



(a) Average �tness of agents

(b) Average reputation of agents

(c) Average workload of agents

Fig. 2: Results of experiment 1



The �tness function is evaluated as soon as an agent has �nished a job whose
WUs have been distributed among the grid workers. The weight between bene�t
and e�ort is a factor α between 0 and 1 de�ned by the system designer. In these
experiments, α was 0.8, which means that the bene�t is valued much higher than
the e�ort term. The agent �tness is between 0 and 1.

The benefit is the time an agent has saved by distributing the job in the
Grid rather than computing it on its own. In order to reach this bene�t, the
agents need an effort in terms of gaining reputation by calculating WUs for
other agents.

4.2 Experiment 1: Evolutionary agents vs. Adaptive Agents

Figure 2a shows the average �tness of the Evolutionary Agents and the Adaptive
Agents. The average �tness of the Evolutionary Agents is much higher than the
�tness of the Adaptive Agents. The average reputation of the Adaptive Agents
shown in Figure 2b is higher than the one of the Evolutionary Agents, but still
the Evolutionary Agents have a good reputation greater than 0.5. Already after
tick 30,000 a dominant chromosome structure has evolved: Gene 1, 4, 5, 6, 7,
8 and 9 have the value 1 and gene 2, 3 and 10 the value 0. Figure 2c shows
that the workload of the Evolutionary Agents decreases and the workload of
the Adaptive Agents increases which means that the Evolutionary Agents suc-
cessfully distribute the work units to the Adaptive Agents. In other words, the
Evolutionary Agents are able to exploit the Adaptive Agents. This behaviour
can also be observed in systems with other agent types. Evolutionary agents are
successful regardless of what the other agents in the system might be because
their behaviour continuously adapts to the system con�guration. The agents
with the highest �tness are copied, thus, the most successful strategy for a given
situation evolves and spreads over time. Therefore, in unknown system con�g-
urations, an evolutionary approach is worthwhile. This holds as long as there
exist enough agents using this strategy. Our further experiments have shown
that the enforcement of successful chromosomes needs about 25% of the system
population being Evolutionary agents in order to be fast enough to successfully
adapt to the environment.

4.3 Experiment 2: Homogeneous system of Evolutionary Agents

It can be seen from Figure 3c that value 1 for gene 1 wins from almost imme-
diately after the start of the simulation. This shows that being cooperative is
a more successful strategy than being egoistic. In Figures 3a it is particularly
noticeable that at tick 20,000 the �tness strongly drops and rises again at tick
30,000. This matches with the fact that during the same period the value 0 of
gene 4 in Figure 4a has established and so the largest part of the agents will
not pay attention to the �tness of the partner in accepting work units. In Fig-
ure 3b it is noticeable that the increased workload in this period indicates that



(a) Average �tness of agents

(b) Average workload of agents

(c) Gene 01 of Evolutionary Agents

Fig. 3: Results of experiment 2



(a) Gene 04 and gene 08 of Evolutionary Agents

Fig. 4: Results of experiment 2

due to the lack of trust the agents cannot distribute their work units any more
and thus they have to process them on their own. As soon as the value 1 for
gene 4 prevails, the �tness increases and the workload decreases again, because
new trust is created between the agents. Thus, it is important to which of the
chromosome signals the Evolutionary Agents pay attention: paying attention to
the others' �tness is crucial to one agent's success. After gene 4 won through,
the chromosome structure stabilizes and it is obvious that in this experiment
it is not important for the Evolutionary Agents to pay attention to their own
intentions based on gene 1 and to the reputation of the partners. Furthermore,
it can be seen in Figure 4a that the amount of agents with a gene 8 develops
to a high value. This means that agents trust agents with a �tness higher than
their own, which also leads to a stable population of agents with a high �tness.
Thus, agents pay attention to other agents' �tness (percentage of gene 4 near 1)
and imitate agents with a high �tness (percentage of gene 8 near 1).

Overall, Evolutionary Agents are also successful in homogeneous systems,
although the amplitude of the �tness is large as there are changes in genes while
trying to adapt the chromosome structure to the self-referential �tness landscape
in a continuously changing environment (cf. [3] (Chapter 2)).

5 Conclusion and Future Work

In this paper, the Evolutionary Agent as an approach to a self-optimising trust-
adaptive agent has been introduced. The results of experiment 1 clearly show
that, in a heterogeneous system, the Evolutionary Agent has a higher �tness than



the Adaptive Agent, with a good reputation and low workload. Experiment 2
shows that Evolutionary agents are also able to interact in homogeneous systems
as well. Therefore, the Evolutionary Agent approach promises to be well-suited
as a run-time optimisation technique for Grid Computing agents. Further work
will include the investigation of the suitability of Evolutionary Agents in large-
scale systems as well as in systems with disturbances like Free Riders.

In the future of our project, we aim at investigating further learning tech-
niques like Learning Classi�er Systems, Neural Networks or Bayesian Networks
in order to convey the optimisation more directly rather than relying on random
mutation e�ects in order to make sure to �nd an optimal solution over time.

Furthermore, we will also investigate the system level of our Trusted Desktop
Grid. The agents are able to form so-called Trusted Communities [2], i.e. agent
organisations based on trust mechanisms. They are able to enhance the e�ciency
and robustness at both individual and system level.
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