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Abstract. This work presents an evolutionary ANN classifier system as
an heart beat classification algorithm suitable for implementation on the
PhysioNet/Computing in Cardiology Challenge 2011 [7], whose aim is to
develop an efficient algorithm able to run within a mobile phone, that
can provide useful feedback in the process of acquiring a diagnostically
useful 12-lead Electrocardiography (ECG) recording.

The method used in such a problem is to apply a very powerful natural
computing analysis tool, namely evolutionary neural networks, based on
the joint evolution of the topology and the connection weights together
with a novel similarity-based crossover.

The work focuses on discerning between usable and unusable electrocar-
diograms tele-medically acquired from mobile embedded devices. A pre-
processing algorithm based on the Discrete Fourier Trasform has been
applied before the evolutionary approach in order to extract the ECG
feature dataset in the frequency domain. Finally, a series of tests has
been carried out in order to evaluate the performance and the accuracy
of the classifier system for such a challenge.

Keywords: Signal Processing, Heartbeat Classification, Evolutionary Algorithms,
Neural Networks

1 Introduction

In the last decades, cardiovascular diseases have represented one of the most
important causes of death in the world [8] and the necessity of a trustworthy
heart state evaluation is increasing. Electrocardiography (ECG) is one of the
most useful and well-known methods for heart state evaluation. Indeed, ECG
analysis is still one of the most common and robust solutions in the heart diseases
diagnostic domain, also due to the fact that it is one of the simplest non-invasive
diagnostic methods for various heart diseases [10].
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In such a research field, one of the most important critical aspects regards
the quality of such heart state evaluations, since, often, the lack of medically
trained experts, working from the acquisition process to the discernment between
usable and unusable medical information, increases the need of easy and efficient
measuring devices, which can send measured data to a specialist. Furthermore,
the volume of the data that have to be recorded is huge and, very often, the
ECG records are non-stationary signals, and critical information may occur at
random in the time scale. In this situation, the disease symptoms may not come
across all the time, but would show up at certain irregular intervals during the
day.

In this sense, the Physionet Challenge [7], on which this work focuses, aims
at reducing, if not eliminating, all the fallacies that currently plague usable
medical information tele-medically provided, by obtaining efficient measuring
systems through smart phones.

In this challenge, several approaches were explored; in particular, in order
to inform inexperienced user about the quality of measured ECGs, artificial-
intelligence-based (AI-based) systems have been considered, by reducing the
quantum of worst quality ECGs sent to a specialist, this contributing to a more
effective use of her time.

Moody and colleagues [5] reported that some of the top competitors in this
challenge employed a variety of techniques, using a wide range of features in-
cluding entropy, higher order moments, intra-lead information, etc, while the
classification methods also included Decision Trees, Support Vector Machines
(SVMs), Fuzzy Logic, and heuristic rules.

An example of SVM-based approach is reported in [8], where the authors
developed a decision support system based on an algorithm that combines sim-
ple rules in order to discard recordings of obviously low quality and a more
sophisticated classification technique for improving quality of AI-based decision
system for mobile phones, showing the fine tuning of sensitivity and specificity
of detection. Another example has been also given in [9], where a rule-based
classification method that mimics the SVM has been implemented, by using a
modified version of a real time QRS-Complex algorithm and a T-Wave detection
approach.

Anyway, according to [5], Artificial Neural Networks (ANNs) have been ex-
tensively employed in computer aided diagnosis because of their remarkable
qualities: capacity of adapting to various problems, training from examples, and
generalization capabilities with reduced noise effects. Also Jiang and colleague
confirmed the usefulness of ANNs as heartbeat classifiers, emphasizing in par-
ticular evolvable ANNs, due to their ability to change the network structure and
internal configurations as well as the parameters to cope with dynamic operating
environments. In particular, the authors developed an evolutionary approach for
the structure and weights optimization of block-based neural network (BbNN)
models [18] for a personalized ECG heartbeat pattern classification.

We approach the heartbeat classification problems with another evolutionary
algorithm for the joint structure and weights optimization of ANNs [4], which
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exploits an improved version of a novel similarity-based crossover operator [1],
based on the conjunction of topology and connection weight optimization.

This paper is organized as follows: Section 2 briefly presents the problem,
while a summary description of the evolutionary approach considered in this
work is reported in Section 3. The results obtained from the experiments carried
out are presented in Section 4, together with a discussion of the performances
obtained. Finally, Section 5 provides some concluding remarks.

2 Problem Description

As previously reported, the ECG is a bio-electric signal that records the electri-
cal activities of the heart. It provides helpful information about the functional
aspects of the heart and cardiovascular system, and the state of cardiac health
is generally reflected in the shape of ECG waveform, that is a critical informa-
tion. For this reason, computer-based analysis and classification and automatic
interpretation of the ECG signals can be very helpful to assure a continuous
surveillance of the patients and to prepare the work of the cardiologist in the
analysis of long recordings.

Moreover, as indicated by the main documentation of Physionet, according to
the World Health Organization, cardiovascular diseases (CVD) are the number
one cause of death worldwide. Of these deaths, 82% take place in low- and
middle-income countries. Given their computing power and pervasiveness, the
most important question is to check the possibility, for mobile phones, to aid
in delivery of quality health care, particularly to rural populations distant from
physicians with the expertise needed to diagnose CVD.

Advances in mobile phone technology have resulted in global availability of
portable computing devices capable of performing many of the functions tradi-
tionally requiring desktop and larger computers. In addition to their technologi-
cal features, mobile phones have a large cultural impact. They are user-friendly
and are among the most efficient and most widely used means of communication.
With the recent progress of mobile-platforms, and the increasing number of mo-
bile phones, a solution to the problem can be the recording of ECGs by untrained
professionals, and subsequently transmitting them to a human specialist.

The aim of the PhysioNet/Computing in Cardiology Challenge 2011 [6] is
to develop an efficient algorithm able to run in near real-time within a mobile
phone, that can provide useful feedback to a layperson in the process of acquiring
a diagnostically useful ECG recording. In addition to the approaches already
cited in Section 1, referring to such a challenge, Table 2 reports other solutions
already presented in the literature, capable of quantifying the quality of the
ECG looking at leads individually and combined, which can be implemented on
a mobile-platform. As reported later, all such approaches are used to compare
their results with those obtained in this work.
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3 The Neuro-Evolutionary Algorithm

The overall algorithm is based on the evolution of a population of individuals,
represented by Multilayer Perceptrons neural networks (MLPs), through a joint
optimization of their structures and weights, here briefly summarized; a more
complete and detailed description can be found in the literature [4]. In this
work the algorithm uses the Scaled Conjugate Gradient method (SCG) [17]
instead of the more traditional error back-propagation (BP) algorithm to decode
a genotype into a phenotype NN, in order to speed up the convergence of such a
conventional training algorithm. Accordingly, it is the genotype which undergoes
the genetic operators and which reproduces itself, whereas the phenotype is used
only for calculating the genotype’s fitness. The rationale for this choice is that the
alternative of applying SCG to the genotype as a kind of ‘intelligent’ mutation
operator, would boost exploitation while impairing exploration, thus making the
algorithm too prone to being trapped in local optima.

The population is initialized with different hidden layer sizes and different
numbers of neurons for each individual according to two exponential distribu-
tions, in order to maintain diversity among all of them in the new population.
Such dimensions are not bounded in advance, even though the fitness function
may penalize large networks. The number of neurons in each hidden layer is
constrained to be greater than or equal to the number of network outputs, in or-
der to avoid hourglass structures, whose performance tends to be poor. Indeed,
a layer with fewer neurons than the outputs destroys information which later
cannot be recovered.

3.1 Evolutionary Process

The initial population is randomly created and the genetic operators are then
applied to each network until the termination conditions are not satisfied.

At each generation, the first half of the population corresponds to the best
⌊n/2⌋ individuals selected by truncation from a population of size n, while the
second half of the population is replaced by the offsprings generated through
the crossover operator. Crossover is then applied to two individuals selected
from the best half of the population (parents), with a probability parameter
pcross, defined by the user together with all the other genetic parameters, and
maintained unchanged during the entire evolutionary process.

It is worth noting that the pcross parameter refers to a ‘desired’ crossover
probability, set at the beginning of the evolutionary process. However, the ‘ac-
tual’ probability during a run will usually be lower, because the application of the
crossover operator is subject to the condition of similarity between the parents.

Elitism allows the survival of the best individual unchanged into the next
generation and the solutions to get better over time. Following the commonly
accepted practice of machine learning, the problem data is partitioned into train-
ing, validation and test sets, used, respectively for network training, to stop learn-
ing avoiding overfitting, and to test the generalization capabilities of a network.
Then, the algorithm mutates the weights and the topology of the offsprings,
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trains the resulting network, calculates fitness on the validation set, and finally
saves the best individual and statistics about the entire evolutionary process.

The application of the genetic operators to each network is described by the
following pseudo-code:

1. Select from the population (of size n) ⌊n/2⌋ individuals by truncation and
create a new population of size n with copies of the selected individuals.

2. For all individuals in the population:
(a) Randomly choose two individuals as possible parents.
(b) Check their local similarity and apply crossover according to the crossover

probability.
(c) Mutate the weights and the topology of the offspring according to the

mutation probabilities.
(d) Train the resulting network using the training set.
(e) Calculate the fitness f on the validation set.
(f) Save the individual with lowest f as the best-so-far individual if the f

of the previously saved best-so-far individual is higher (worse).
3. Save statistics.

The SimBa crossover starts by looking for a ‘local similarity’ between two
individuals selected from the population. If such a condition is satisfied the
layers involved in the crossover operator are defined. The contribution of each
neuron of the layer selected for the crossover is computed, and the neurons of
each layer are reordered according to their contribution. Then, each neuron of
the layer in the first selected individual is associated with the most ‘similar’
neuron of the layer in the other individual, and the neurons of the layer of the
second individual are re-ranked by considering the associations with the neurons
of the first one. Finally a cut-point is randomly selected and the neurons above
the cut-point are swapped by generating the offspring of the selected individuals.

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying SCG to train the network. All the weights
and the corresponding biases are updated by using variance matrices and evo-
lutionary strategies applied to the synapses of each NN, in order to allow a
control parameter, like mutation variance, to self-adapt rather than changing
their values by some deterministic algorithms. Finally, the topology mutation
is implemented with four types of mutation by considering neurons and layer
addition and elimination. The addition and the elimination of a layer and the
insertion of a neuron are applied with three independent probabilities, indicated
as p+layer, p

−
layer and p+neuron, while the elimination of a neuron is carried out only if

the contribution of that neuron is negligible with respect to the overall network
output.

For each generation of the population, all the information of the best indi-
vidual is saved.

As previously considered [3, 2], the evolutionary process adopts the conven-
tion that a lower fitness means a better NN, mapping the objective function into
an error minimization problem. Therefore, the fitness used for evaluating each
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individual in the population is proportional to the mean square error (mse) and
to the computational cost of the considered network. This latter term induces a
selective pressure favoring individuals with reduced-dimension topologies.

The fitness function is calculated, after the training and the evaluation pro-
cesses, by the Equation 1 and it is defined as a function of the confusion matrix
M obtained by that individual:

fmulticlass(M) = Noutputs − Trace(M), (1)

where Noutputs is the number of output neurons and Trace(M) is the sum
of the diagonal elements of the row-wise normalized confusion matrix, which
represent the conditional probabilities of the predicted outputs given the actual
ones.

4 Experiments and Results

The data used for the PhysioNet/CINC 2011 Challenge consist of 2,000 twelve-
lead ECGs (I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, and V6), each 10
second long, with a standard diagnostic bandwidth defined in the range (0.05–
100 Hz). The twelve leads are simultaneously recorded for a minimum of 10
seconds; each lead is sampled at 500 Hz with 16-bit resolution (i.e., 16 bits per
sample).

The proposed approach has been evaluated by using the dataset provided by
the challenge organizers. This dataset, described above in Section 2, is public
and has been distributed in two different parts:

– Set A: this dataset has to be used to train the approach. It is composed of
998 instances provided with reference quality assessments;

– Set B: this dataset has to be used for testing the approach. It is composed
of 500 instances and the reference quality assessments are not distributed
to the participants. The reports generated by the approach have to be sent
to the submission system in order to directly receive the results from the
system used for the challenge.

We split the Set A in two parts: a training set composed of the 75% of the
instances contained in the Set A, and a validation set, used to stop the training
algorithm, composed of the remaining 25%. While the Set B is used as test set
for the final evaluation of the approach.

Each instance of the dataset represents an ECG signal composed of 12 series
(one for each lead) of 5,000 values representing the number of recordings per-
formed for each lead. These data have been preprocessed in order to extract the
features that we used to create the datasets given in input to the algorithm. We
have applied to each lead the fast Fourier transform function in order to trans-
form each lead to the frequency domain. After the transformation, we summed
the 5,000 values by groups of 500 in order to obtain 10 features for each lead.
Finally, The input attributes of all datasets have been rescaled, before being fed
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as inputs to the population of ANNs, through a Gaussian distribution with zero
mean and standard deviation equal to 1.

The experiments have been carried out by setting the parameters of the
algorithm to the values obtained from a first round of experiments aimed at
identifying the best parameter setting. These parameter values are reported in
Table 1. We performed 40 runs, with 40 generations and 60 individuals for each
run, while the number of epochs used to train the neural network implemented
in each individual has been set to 250.

Symbol Meaning Default Value

n Population size 60

p+
layer Probability of inserting a hidden

layer
0.05

p−
layer Probability of deleting a hidden

layer
0.05

p+
neuron Probability of inserting a neuron

in a hidden layer
0.05

pcross ‘Desired’ probability of applying
crossover

0.7

δ Crossover similarity cut-off value 0.9
Nin Number of network inputs 120
Nout Number of network outputs 1
α Cost of a neuron 2
β Cost of a synapsis 4
λ Desired tradeoff between net-

work cost and accuracy
0.2

k Constant for scaling cost and
MSE in the same range

10−6

Table 1. Parameters of the Algorithm.

The challenge has been organized in two different events: a closed event and
an open one. While in the close event it is possible to develop the classification
algorithm in any language, in the open event it is mandatory to develop the
algorithm by using the Java language. For this reason, by considering that the
proposed approach has been developed in Java too, we compared the obtained
results with the results obtained by the other systems that participated to the
challenge in the open event. It is important to highlight that we do not claim to
obtain the best performance. Our goal was to show that, even if our system is
trained with a training set that exploits very little information, the performance
obtained by our approach does not lag too much behind the one obtained by the
best state-of-the-art systems.

Table 2 shows the results obtained by the other participants compared with
the results obtained by the proposed approach. Besides the comparison with
the other approaches presented at the challenge, we have also compared our
approach with the other following neuro-genetic approaches:

– Simple ANN with Conjugated Gradient: the classifiers are encoded with a
population of ANNs, trained with the Conjugated Gradient method over
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1,000,000 epochs. Also in this case, the networks are then evaluated over,
respectively, the validation and the test sets, through the application of the
mean square error.

– NeuroEvolution of Augmenting Topologies (NEAT) approach [19]: an evolu-
tionary approach applied to neural network design that: (1) uses a crossover
on different topologies, (2) protects structural innovation by using speciation,
and (3) applies an incrementally growing from minimal network structures.

– Evolved ANN without crossover: the population of ANNs are evolved through
the joint optimization of architecture and connection weights reported in this
work, but in this case no crossover is implemented. The number of epochs
corresponds to 250.

We have inserted both the best and the average performance obtained by
the proposed approach. It is possible to observe that, if we consider the best
performance, we obtained the second best accuracy; while the average accuracy,
computed over the 40 runs, obtained the fourth performance. The robustness of
the approach is also proved by observing the low value of the standard deviation
that, in the performed experiments, was 0.011. With the italic font we show the
performance obtained by the other approaches that we have used for classify the
data in order to compare them with the approach proposed in this paper. The
results demonstrated that the proposed approach outperforms the other ones.
Indeed, the NEAT approach obtained only the seventh accuracy, while the other
two approaches obtained respectively the eighth and the eleventh performance.

Participant Score

Xiaopeng Zhao [11] 0.914

Proposed Approach (Best) 0.902

Benjamin Moody [12] 0.896

Proposed Approach (Average) 0.892

Lars Johannesen [13] 0.880

Philip Langley [14] 0.868

NEAT (Average) 0.856

Evolved ANN without crossover (Average) 0.845

Dieter Hayn [15] 0.834

Vclav Chudcek [16] 0.833

Simple ANN with Conjugated Gradient (Average) 0.818

Table 2. Results of the open event challenge.

Besides the evaluation on the test set, we performed also a ten-fold cross
validation on the training set. We split the training set in ten fold Fi and we
performed ten different set of 10 runs in order to observe which is the behavior of
the algorithm when training, validation, and test data change. Table 3 shows the
results of the ten-fold cross validation. By observing the results we can observe
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the robustness of the algorithm. In fact, the accuracies obtained by changing
the folds used for training, validation, and test are very close; moreover, the
standard deviation of the results is very low.

Training Set Validation Set Test Set Average Accuracy Standard Deviation

F1...F7 F8, F9 F10 0.8984 0.0035

F2...F8 F9, F10 F1 0.8988 0.0067

F3...F9 F10, F1 F2 0.9002 0.0075

F4...F10 F1, F2 F3 0.9022 0.0107

F5...F10, F1 F2, F3 F4 0.9040 0.0071

F6...F10, F1, F2 F3, F4 F5 0.9002 0.0029

F7...F10, F1...F3 F4, F5 F6 0.9002 0.0018

F8...F10, F1...F4 F5, F6 F7 0.8976 0.0054

F9, F10, F1...F5 F6, F7 F8 0.9032 0.0090

F10, F1...F6 F7, F8 F9 0.8986 0.0047

Table 3. Results of the ten-fold cross validation.

5 Conclusions

In this study, we have proposed an ECG classification scheme based on a neuro-
evolutionary approach, based on the joint evolution of the topology and the
connection weights together with a novel similarity-based crossover, to aid clas-
sification of ECG recordings. The signals were first preprocessed into the fre-
quence domain by using a Fast Fourier Trasform algorithm, and then they were
normalized through a gaussian distribution with 0 mean and standard deviation
equal to 1. The present system was validated on real ECG records taken from
the PhysioNet/Computing in Cardiology Challenge 2011.

A series of tests has been carried out in order to evaluate the capability of the
neuro-evolutionary approach to discern between usable and unusable electrocar-
diograms tele-medically acquired from mobile embedded devices. The obtained
results show an overall satisfactory accuracy and performances in comparison
with other approaches carried out in this challenge and presented in the litera-
ture.

It is important to stress the fact that the proposed method was able to
achieve top-ranking classification accuracy despite the use of a quite standard
preprocessing step and a very small number of input features. No attempt was
made yet to fine tune the signal pre-processing and the feature selection steps.
On the other hand, it is well known that these two steps are often critical for the
success of a signal classification methods. For this reason, we believe that the
proposed neuro-evolutionary approach has a tremendous improvement potential.

Future works will involve the adoption of more sophisticated preprocessing
techniques, by working, for example, on a multi-scales basis, where each scale
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represents a particular feature of the signal under study. Other ideas could re-
gard the study and the implementation of feature selection algorithms in order
to provide an optimized selection of the signal given as inputs to the neural
networks.

References

1. Azzini, A., Tettamanzi, A., Dragoni, M.: SimBa-2: Improving a Novel Similarity-
Based Crossover for the Evolution of Artificial Neural Networks. In: 11th Interna-
tional Conference on Intelligent Systems Design and Applications (ISDA 2011), pp.
374–379. IEEE (2011)

2. Azzini, A., Dragoni, M., Tettamanzi, A.: A novel similarity-based crossover for ar-
tificial neural network evolution. In: Parallel Problem Solving from Nature PPSN
XI, Lecture Notes in Computer Science. vol. 6238, pp. 344–353. Springer (2010)

3. Azzini, A., Tettamanzi, A.: Evolving neural networks for static single-position au-
tomated trading. Journal of Artificial Evolution and Applications 2008(Article ID
184286), 1–17 (2008)

4. Azzini, A., Tettamanzi, A.: A new genetic approach for neural network design.
In: Engineering Evolutionary Intelligent Systems. Studies in Computational Intelli-
gence. vol. 82. Springer (2008)

5. Silva, K., Moody, G.B., Celi, L.: Improving the Quality of ECGs Collected Using
Mobile Phones: The PhysioNet/Computing in Cardiology Challenge 2011. Contri-
bution sent to the 38th Physionet Cardiology Challenge (2011).

6. PhysioNet: Research Resource for Complex Physiologic Signals, http://www.

physionet.org

7. Moody, G.B.: Improving the quality of ECGs collected using mobile phones: The
12th Annual Physionet/Computing in Cardiology Challenge. Computing in Cardi-
ology Challenge 38 (2011).

8. Data Driven Approach to ECG Signal Quality Assessment using Multistep SVM
Classification. Contribution sent to the 38th Physionet Cardiology Challenge (2011).

9. Tat, T.H.C., Chen Xiang, C., Thiam, L.E.: Physionet Challenge 2011: Improving the
Quality of Electrocardiography Data Collected Using Real Time QRS-Complex and
T-Wave Detection. Contribution sent to the 38th Physionet Cardiology Challenge
(2011).

10. S. Jokic, S. Krco, V. Delic, D. Sakac, Jokic, I., Lukic, Z.: An Efficient ECG Mod-
eling for Heartbeat Classification. IEEE 10th Symposium on Neural Network Ap-
plications on Electrical Engineering, NEUREL 2010, Belgrade, Serbia, September,
23-25, 2010.

11. H. Xia, J. McBride, A. Sullivan, T. De Bock, J. Bains, D. Wortham, X. Zhao: A
Multistage Computer Test Algorithm for Improving the Quality of ECGs. Contri-
bution sent to the 38th Physionet Cardiology Challenge (2011).

12. B.E. Moody: A Rule-Based Method for ECG Quality Control. Contribution sent
to the 38th Physionet Cardiology Challenge (2011).

13. L. Johannesen: Assessment of ECG Quality on an Android Platform. Contribution
sent to the 38th Physionet Cardiology Challenge (2011).

14. P. Langley, L. Di Marco, S. King, C. Di Maria, W. Duan, M. Bojarnejad, K.
Wang, D. Zheng, J. Allen, A. Murray: An Algorithm for Assessment of ECG Quality
Acquired Via Mobile Telephone. Contribution sent to the 38th Physionet Cardiology
Challenge (2011).



ECG Signal Classification with EANNs 11

15. D. Hayn, B. Jammerbund, G. Schreier: Real-time Visualization of Signal Quality
during Mobile ECG Recording. Contribution sent to the 38th Physionet Cardiology
Challenge (2011).

16. V. Chudcek, L. Zach, J. Kulek, J. Spilka, L. Lhotsk: Simple Scoring System for
ECG Signal Quality Assessment on Android Platform. Contribution sent to the
38th Physionet Cardiology Challenge (2011).

17. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49(6) (1952).

18. W. Jiang, S.G. Kong. Block-Based Neural Networks for Personalized ECG Signal
Classification. IEEE Transactions on Neural Networks, 18(6) (2007).

19. K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10:99–127, 2002.


